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Abstract—This paper presents a comparison between different
control strategies used for estimation purposes for systems with
unknown inputs in the recently proposed Control-based Observer
approach. In particular, several robust state and unknown inputs
observers are derived using classical controllers such as Propor-
tional or Proportional Integral, Linear Quadratic Regulator or
Linear Quadratic Integrator and H∞ Full information. They are
also compared with criteria such as the quality of the estimation,
the speed of the observers, the robustness against the noise and
the complexity of the observers. Simulation results are provided
to better highlight the comparison.

Keywords - Observers for linear systems, unknown inputs
estimation, control-based observer, P, PI, Linear Quadratic
Regulator, Linear Quadratic Integrator and H∞ Full Infor-
mation control strategies

I. INTRODUCTION

The observer problem is of great importance in the field of
automatic control, motivated mainly by the need to estimate
some internal information describing a dynamical system,
which is not available, by using some external measurements.
There are multiple reasons for which one cannot directly
access some internal information such as technological con-
straints (some quantities cannot be measured) or economical
ones (the cost of the sensors can be quite high). The impor-
tance of an observer can be easily explained by its central
role in automatic control applications. Various purposes can be
associated to it such as monitoring (fault detection), modeling
(parameters identification) or control (state estimation). A long
and rich history stands behind solving the observer problem.
Among the solutions proposed we can find classical methods
like Luenberger observer [1] or Kalman filter [2]. An extension
towards robust solution for the above mentioned problem is
the H∞ observer [3]. A more simple alternative approach for
a robust state estimation is obtained using PI observer [4].

In the present paper, a different approach to design observers
is taken into account following a technique recently introduced
in [5] which proposes that instead of solving the direct
observer problem, one can design an observer by solving a
control problem. This new paradigm is called Control-based
Observer (CbO) design and the idea behind it states that
one can design a control law for a model of the system

such that the real output of the system is followed by the
output of the model. The method already showed good results
for different applications such as wind speed estimation [6],
surface estimation in Scanning Tunneling Microscope [7], [8]
[9] and unknown input disturbance estimation in a magnetic
levitation process [10].

A general problem that can be addressed in this framework
can be formulated as follows: given a linear system with
known and unknown inputs, design an observer for state and
unknown inputs estimation based on the known inputs and
outputs of the system, the model of the system, and a chosen
control strategy such that the outputs of the model follow the
system outputs.

The main contribution of the paper is to present a new robust
Control-based Observer based on an H∞ Full Information
control design, together with a comparison with different other
control approaches such as a Proportional (P), Proportional
Integral (PI), Linear Quadratic Regulator (LQR) and Linear
Quadratic Integrator (LQI) designed for the same goal. The
different control strategies used for estimation purposes in
CbO framework are compared regarding criteria such as the
quality of the estimation, the speed of the observers, the
robustness against the noise and the complexity of the obtained
observers to illustrate the performances of the observers.

The paper is organized as follows: in Section II the Control-
based Observer paradigm is recalled highlighting different for-
mulations of the problem which can be solved. In Section III
the analytic solutions of the observers which will be compared
are given, including the H∞ based design. Simulation results
are presented in Section IV and finally Section V concludes
the paper.

II. CONTROL-BASED OBSERVER PARADIGM

This section briefly describes the principle of Control-based
Observer, in particular for linear systems having unknown
inputs. The idea for this technique has its roots in the duality
between observer problem and control problem.

Let us consider a linear system described by:

ẋ = Ax+Bu+Gv
y = Cx+Du+ Jv

(1)
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where x ∈ Rn, u ∈ Rm, y ∈ Rp and v ∈ Rq classically
stand for state, known input, measured output and unknown
inputs of the system. Moreover, matrices A, B, C, D, G, J
completely describe the state and the output evolution of the
linear system.

The Control-based Observer approach states that one can
design an observer by controlling a model of the system
computing an appropriate control input such that the output of
the model follows the output of the system (tracking problem)
as described in the following equation:

˙̂x = Ax̂+Bu+Gv̂
ŷ = Cx̂+Du+ Jv̂
v̂ = κ(x̂, t)

(2)

where first equation in (2) represents the dynamic of the
model, ŷ is the output of chosen model and finally v̂ is the
control law described by the controller κ(x̂, t).

One can notice that the model of the system is controlled
via the unknown inputs such that ŷ follows y, thus as a
consequence the observer can provide not only the state of
the system, x̂ which will be an estimate of x, but also the
unknown inputs, v̂ which will be an estimate of v.

It is worth mentioning at this point that in order to estimate
the state and the unknown inputs the system described by
equation (1) has to fulfill some appropriate observability
conditions while the model described by (2) has to admit some
appropriate controllability requirements.

This principle is summarized in Figure 1.

Fig. 1: Control-based Observer principle

Following this brief description of Control-based Observer
approach it is clear how the observer problem can be converted
into a control (tracking) problem.

However depending on the estimation problem which has
to be solved the observer obtained using the control-based
approach can have different structures. For example, one can
formulate the objectives of the estimation problem concerning:

i. State estimation
ii. Input estimation

iii. State and input estimation
Another formulation could be seen regarding the informa-

tion available for the controller:

i. Output feedback - the information available is the error
between ŷ and y

ii. State feedback - the information available is the full state
of the model, x̂ (and of course the output y)

III. DESIGNING DIFFERENT CONTROLLERS FOR CBO

In this section we exploit the choice of different controllers
for the control-based framework. In particular we start with
some simple control strategies such as P and PI controller,
followed by some more advanced techniques such as LQR
and LQI controllers and finally a robust H∞ Full Information
controller is presented.

As for the estimation problem that we want to solve we con-
sider a system which includes unknown inputs. The objective
is to estimate the state as well as the unknown inputs of the
system. The controllers designed for Control-based Observers
use the information about the state of the model and about the
output of the system.

In this section we consider the system described in equation
(1) further including state noise, w ∈ Rr, and measurement
noise, n ∈ Rs, as follows:

ẋ = Ax+Bu+ Fw +Gv
y = Cx+Du+Hn+ Jv

(3)

In order to design a CbO for estimating the state and the
unknown inputs it is assumed that the following conditions
regarding the system described by equation (3) hold:

a1. The pair

([
A G
0 0

]
,
[
C J

])
is observable

a2. The pair
(
A,G

)
is controllable

where the first conditions ensures the vector
[
xT vT

]T
can be

reconstructed, while the second one ensures that the model
can be controlled such that the output of the model follows
the output of the system.

Next, the control strategies chosen to design the Control-
based Observer are presented. Without loss of generality, we
will consider further on that the matrices D = 0 and J = 0.

A. P and PI controllers

1) P controller: For this particular problem one can choose
a two-degree control strategy: simple state feedback and the
output y of the system which has to be followed by ŷ:

Model:
˙̂x = Ax̂+Bu+Gv̂
ŷ = Cx̂

(4)

Control strategy:

v̂ = −KP
x x̂+KP

y y (5)

where KP
x is chosen such that A − GKP

x in equation (6) is
stable and has a certain dynamic (a pole placement technique
can be applied) and KP

y = [C(A − GKP
x )−1G]−1 to ensure

low frequency accuracy.
Observer:

˙̂x = (A−GKP
x )x̂+Bu+GKP

y y (6)
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Clearly, the dynamic of the observer in this case is given
by the matrix A−GKP

x which can be chosen arbitrarily fast
and as soon as ŷ follows y we can obtain x̂ the estimate of
state system x and v̂ the estimate of unknown input v.

Remark:
Notice that one can recover the Luenberger Observer using

this Control-based Observer framework by considering the
case for the system model with no unknown input and choos-
ing as control strategy a simple ’output feedback’ P controller
(KP ) as described in the following equation:

˙̂x = Ax̂+Bu+GKP (ŷ − y) (7)

Since the only constrain for choosing G is that the pair (A, G)
is controllable, G can be set to be the identity matrix, which
finally leads to the equation of Luenberger Observer:

˙̂x = (A−KPC)x̂+Bu+KP y (8)

2) PI controller: A PI controller is also chosen to control
the model in order to assure that ŷ follows y. An extension of
the system model is needed to include the integral effect of
the controller which leads to the following equations.

Model:

˙̂x = Ax̂+Bu+Gv̂
˙̂xi = ŷ − y
ŷ = Cx̂

(9)

Control strategy:

v̂ = −KPI
x x̂−KPI

i x̂i (10)

In order to compute KPI
x and KPI

i let us consider:

KPI =
[
KPI

x KPI
i

]
(11)

and set:

API =

[
A 0
C 0

]
GPI =

[
G
0

]
(12)

Finally, KPI is computed such that API −GPIKPI is sta-
ble and has an imposed dynamic (a pole placement technique
can be again applied).

Observer:

[
˙̂x
˙̂xi

]
=

[
A−GKPI

x −GKPI
i

C 0

] [
x̂
x̂i

]
+

[
B
0

]
u+

[
0
I

]
y

(13)
The dynamic of the observer is given by the matrix API −

GPIKPI which can again be chosen arbitrarily fast and as
soon as ŷ follows y we can obtain x̂ the estimate of state
system x and v̂ the estimate of unknown input v.

Remark:
Notice that another classical observer can be obtained in this

case, the so called PI observer. Again the case for the system
model with no unknown input is considered together with an

’output feedback’ PI controller as presented in the equation
below:

˙̂x = Ax̂+Bu+GKPI(ŷ − y) +GKPI
i xi

˙̂xi = ŷ − y (14)

Setting again G to the identity matrix leads to the equations
of PI Observer.

B. LQR and LQI controllers

1) LQR controller: The discussion continues with the
choice of a Linear Quadratic Regulator (LQR) as a control
strategy.

Model:

˙̂x = Ax̂+Bu+Gv̂
ŷ = Cx̂

(15)

Control strategy:

v̂ = −KLQR
x x̂+KLQR

y y (16)

where v̂1 = −KLQR
x x̂ is computed by minimizing a cost

function of the form:

JLQR =

∫ ∞
0

(x̂TQLQRx̂+ v̂T1 RLQRv̂1)dt (17)

where QLQR and RLQR are positive semidefinite and definite
matrices.

Finally, the feedback matrix KLQR
x is given by the equation:

KLQR
x = R−1LQRG

TXLQR (18)

Where XLQR is the solution of Algebraic Riccati Equation:

ATXLQR +XLQRA+KLQR
x

T
RLQRK

LQR
x +QLQR = 0

(19)
Here again, KLQR

y can be computed so as to reduce low
frequency error between y and ŷ.

Observer:

˙̂x = (A−GKLQR
x )x̂+Bu+GKLQR

y y (20)

2) LQI controller: The next controller chosen is a Linear
Quadratic Integrator and again the extension of the model is
considered by adding the integral action. Model:

˙̂x = Ax̂+Bu+Gv̂
˙̂xi = ŷ − y
ŷ = Cx̂

(21)

Control strategy:

v̂ = −KLQI
x x̂−KLQI

i x̂i (22)

To compute the gain of the Linear Quadratic Integrator
controller, KLQI =

[
KLQI

x KLQI
i

]
, let us consider the

following state space representation for the extended system

(xLQI =

[
x̂
xi

]
):

ALQI =

[
A 0
C 0

]
GLQI =

[
G
0

]
(23)
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where we want to compute v̂ = −KLQIxLQI by minimizing
a cost function:

JLQI =

∫ ∞
0

(xTLQIQLQIxLQI + v̂TRLQI v̂)dt (24)

where QLQI and RLQI are positive semidefinite and definite
matrices.

Finally, the feedback matrix KLQI is given by the equation:

KLQI = R−1LQIG
TXLQI (25)

Where XLQI is the solution of Algebraic Riccati Equation:

ALQITXLQI+XLQIA
LQI+KLQITRLQIK

LQI+QLQI = 0
(26)

Observer:[
˙̂x
˙̂xi

]
=

[
A−GKLQI

x −GKLQI
i

C 0

] [
x̂
x̂i

]
+

[
B
0

]
u+

[
0
I

]
y

(27)

C. H∞ Full Information controller
Finally let us present the H∞ Full Information Controller

approach (see for example [11]) to obtain a robust Control-
based Observer. Notice that this provides a less complex
structure for the observer (lower dimension) than in our former
approach of [8].

In particular indeed, for the Full Information problem the
corresponding generalized plant has a special form, because
it is assumed that the state of the generalized plant, x̂FI , as
well as all external signals, y, are known, which means that
the controller is provided with Full Information.

Let us first consider the block diagram of the observer as
illustrated in Figure 2: The generalized plant of the control

Fig. 2: Control-based Observer - H∞ FI controller

problem is:
Model:

˙̂x = Ax̂+Bu+Gv̂
ẋps = A1psx̂+A2psxps +B1psy +B2psv̂

z = C1

[
x̂
xps

]
+D11y +D12v̂

(28)

where xFI =

[
x̂
xps

]
is the state of the generalized plant,

y is the external signal, v̂ is the control input and z is
the error signal which has to be kept small. The second
equation of (28) represents the performance specification of
the control problem, xps ∈ Rk. The state dimension of this
equation depends on the complexity of the chosen templates.
Control strategy:

v̂ = −K∞x
[
x̂
xps

]
−K∞y y (29)

where the goal is to search for K∞ =
[
K∞x K∞y

]
such that

given an attenuation γ > 0 we have:

||Tzy(s)||∞ =
||z||2
||y||2

< γ (30)

Let us consider the following notations:

AFI =

[
A 0
A1ps A2ps

]
B1 =

[
0

B1ps

]
B2 =

[
G
B2ps

]
(31)

The assumptions relevant to the Full Information problem
concerning the generalized plant are :
A1. (AFI , B2) is stabilizable
A2. D12 is full column rank

A3.
[
AFI − jωI B2

C1 D12

]
has full column rank for all ω

The solution for H∞ Full Information problem is given in
terms of some Algebraic Riccati Equation solution for which
the corresponding Hamiltonian matrix is:

HFI =

[
AFI 0
−CT

1 C1 −AT
FI

]
−

[
B

−CT
1 D1•

]
R−1FI

[
DT

1•C1 B
] (32)

where

RFI = DT
1•D1• −

[
γ2I 0
0 0

]
D1• =

[
D11 D12

]
B =

[
B1 B2

]
Assuming that the appropriate Algebraic Riccati Equation
described by the Hamiltonian, HFI , defined above has a
stabilizing solution (denoted by X∞) we define:

F =

[
F1

F2

]
= −R−1FI

[
DT

1•C1 +BTX∞
]

(33)

K∞ = K∞x xFI −K∞y y (34)

for which we have the gains:

K∞x =
[
T2 I

]
F K∞y = T2 T2 = DT

12D11 (35)

Observer:[
˙̂x
ẋsp

]
=

([
A 0
A1ps A2ps

]
−
[
G
B2ps

]
K∞x

)[
x̂
xps

]
=

[
B
0

]
u+

([
0

B1ps

]
−
[
G
B2ps

]
K∞y

)
y

(36)
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IV. SIMULATION RESULTS AND COMPARISON AMONG THE
DIFFERENT CONTROL-BASED OBSERVERS

A. Simulation system parameters

In this section, a linear second order system having un-
known inputs is proposed in order to test and compare all the
Control-based Observers presented. It is in particular represen-
tative of the former real applications that we addressed with
this Control-based Observer [6]-[9] and can easily highlight
the key components of the estimation method as well as the
performances and the complexity of the designed observers.

Let us consider the system as described in the equation:

ẋ = Ax+ Fw +Gv
y = Cx+Hn

(37)

where the variables have the same meaning as in equation (3).
In particular, we have:

A =

[
0 1
−a1 −a2

]
G =

[
0
g1

]
C =

[
c1 0

]
(38)

Where all the coefficients of the matrices which describe
the system are unitary. One can notice that the input, u, is
here omitted. This doesn’t change the observer structure since
the system is linear and u is assumed to be known.

Next the Control-based Observers using LQR, LQI and H∞
FI controllers are designed. We don’t consider for comparison,
the simple cases of a P and PI controller since in the presence
of measurement noise, the performances of those observers
become quite poor.

On the one hand, to design the CbO using LQR regulator we

have chosen the weighting matrices QLQR =

[
102 0
0 102

]
and

RLQR = 1. On the other hand, for the LQI weighting matrices

we have chosen QLQI =

102 0 0
0 102 0
0 0 103

 and RLQI = 1.

Finally, for H∞ FI controller we have chosen the following
templates which specifies the performance characteristics of
the control problem: 1

Wz
is a first order high pass filter having

the bandwidth 0.4 rad/sec, the low frequencies attenuation
−60 dB and high frequency amplification 4 dB; 1

Wu
is a

first order low pass filter having the bandwidth 14 rad/sec,
the low frequencies amplification 10 dB and high frequency
attenuation −40 dB.

B. Comparison between Control-based Observers designs

The results of the Control-based Observers for all three
controllers are shown in Figure 4 for the state estimation and
Figure 5 for the unknown input estimation. In Figure 3 a
comparison between the noisy output of the system and the
estimated output of the model is illustrated.

In order to be consistent in our comparison, the param-
eters of the controllers have been chosen such that all the
observers have a similar speed of convergence. In addition,
all simulations are made with the same initial conditions:
x(0) = [0.1, 0.2]T and x̂(0) = [0.4, 0.5]T .

At a first glance it seems that using the robust H∞ FI
controller we get better results in terms of unknown input
estimation as well as state estimation. The result isn’t surpris-
ing since the robust controller is more complex than the other
two optimal ones. To confirm the results the mean square error
(MSE) between the real values and the estimated ones for both
states and unknown input is given in Table I.

TABLE I: Mean Square Error real values and estimated ones

MSE (x1, x̂1) MSE (x2, x̂2) MSE (v, v̂)
CbO (LQR) 1.2 10−4 3.4 10−4 63.6 10−3

CbO (LQI) 1.4 10−4 2.5 10−4 5.5 10−3

CbO (H∞ FI) 2.5 10−4 1.2 10−4 1.9 10−3

Another discussion worth having is about the complexity
of the observers in terms of computation load and dimensions
of the model together with the designed controller. It can be
noticed that the design of all three controllers reduces to solve
an Algebraic Riccati Equation.

Thus the complexity of the observer is given by the di-
mension of the model used to solve the control problem. The
dimension of the models for each control strategies used to
design a CbO is summarized in Table II.

TABLE II: CbO dimensions for different control strategies

CbO (LQR) CbO (LQI) CbO (H∞ FI)
observer dim. n n + p n + k

In particular, the Control-based Observer using the LQR
controller has the smaller dimension model (the same state
dimension as the observed system). Next, the case of the
LQI controller the observer state dimension increases with
the number of outputs (the integral action). Finally, in the
case of Full Information H∞ controller the complexity of the
observer depends on the chosen performance specification, see
equation (28). Thus the dimension of the observer increases
with the size of the vector xps, which is k. This leads to the
conclusion that the price for a ’good’ estimation is paid in
terms of increased complexity.

V. CONCLUSION

The paper has presented a comparison between different
control strategies such as P, PI, LQR, LQI and H∞ Full
Information controller in order to illustrate the capabilities of
a recently proposed technique to estimate the state and the
unknown inputs of a dynamical system. It has been shown
that using an H∞ Full Information controller we obtain better
results in terms of state and unknown input estimation than
the other control strategies proposed, but with the cost of an
increased complexity of the observer.

One of the main advantages of this method is that the un-
known input estimation is directly obtained as a consequence
of the control-based observer problem formulation. Since no
assumption about the unknown inputs dynamic is made, the
estimation results is better than in other classical methods.
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It also shows that using this Control-based Observer
paradigm the equations of more classical observers such as
Luenberger Observer or PI Observer can be obtained.

Extensions to more general forms of systems (nonlinear)
are part of further work.
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